Preconditioning Indefinite Systems in Interior Point Methods for Optimization
نویسندگان
چکیده
Every Newton step in an interior-point method for optimization requires a solution of a symmetric indefinite system of linear equations. Most of today’s codes apply direct solution methods to perform this task. The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless appropriately preconditioned. Two types of preconditioners which use some form of incomplete Cholesky factorization for indefinite systems are proposed in this paper. Although they involve significantly sparser factorizations than those used in direct approaches they still capture most of the numerical properties of the preconditioned system. The spectral analysis of the preconditioned matrix is performed: for convex optimization problems all the eigenvalues of this matrix are strictly positive. Numerical results are given for a set of public domain large linearly constrained convex quadratic programming problems with sizes reaching tens of thousands of variables. The analysis of these results reveals that the solution times for such problems on a modern PC are measured in minutes when direct methods are used and drop to seconds when iterative methods with appropriate preconditioners are used.
منابع مشابه
Preconditioning Indefinite Systems in Interior-Point Methods for quadratic optimization
A new class of preconditioners is proposed for the iterative solution of symmetric indefinite systems arising from interior-point methods. The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless appropriately preconditioned. Now we introduce two types of preconditione...
متن کاملPreconditioning indefinite systems in interior point methods for large scale linear optimisation
We discuss the use of preconditioned conjugate gradients method for solving the reduced KKT systems arising in interior point algorithms for linear programming. The (indefinite) augmented system form of this linear system has a number of advantages, notably a higher degree of sparsity than the (positive definite) normal equations form. Therefore we use the conjugate gradients method to solve th...
متن کاملPreconditioning Indefinite Systems in Interior Point Methods for Large Scale Linear Optimization
We discuss the use of preconditioned conjugate gradients method for solving the reduced KKT systems arising in interior point algorithms for linear programming. The (indefinite) augmented system form of this linear system has a number of advantages, notably a higher degree of sparsity than the (positive definite) normal equations form. Therefore we use the conjugate gradients method to solve th...
متن کاملCOAP 2004 Best
In each year, the Computational Optimization and Applications (COAP) editorial board selects a paper from the preceding year’s COAP publications for the “Best Paper Award”. The recipients of the award for papers published in 2004 are Luca Bergamaschi, University of Padova, Italy, Jacek Gondzio, University of Edinburgh, Scotland, and Giovanni Zilli, University of Padova, Italy, for their paper “...
متن کاملInexact constraint preconditioners for linear systems arising in interior point methods
Issues of indefinite preconditioning of reduced Newton systems arising in optimization with interior point methods are addressed in this paper. Constraint preconditioners have shown much promise in this context. However, there are situations in which an unfavorable sparsity pattern of Jacobian matrix may adversely affect the preconditioner and make its inverse representation unacceptably dense ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 28 شماره
صفحات -
تاریخ انتشار 2004